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Universality in quantum parametric correlations
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We investigate the universality of correlation functions of chaotic and disordered quantum systems as an
external parameter is varied. A general scaling procedure is introduced which makes the theory invariant under
reparametrizations. Under certain general conditions we show that this procedure is unique. The approach is
illustrated with the particular case of the distribution of eigenvalue curvatures. We also derive a semiclassical
formula for the nonuniversal scaling factor, and give an explicit expression valid for arbitrary deformations of
a billiard system.@S1063-651X~99!10910-3#
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Several criticisms were formulated many years ago c
cerning the applicability of random matrix theory~RMT! in
the description of the behavior of complex quantum syste
such as the atomic nucleus. The basic question was as
lows: should one trust the predictions of RMT at all if a
ready the average density of states~Wigner’s semicircle law!
does not give a good description of real systems? We n
know that RMT describes the universal behavior of lo
fluctuation properties. These have been shown to be, in
limit of large dimensions, invariant for a large class of e
sembles of matrices, while the average spectral densit
ensemble dependent and therefore nonuniversal@1,2#. For a
given physical system, it is now well established that in or
to eliminate the system-dependent features and observe
versal fluctuations one should consider, instead of the or
nal eigenenergiesEj , j 51,2,..., theunfolded spectrum

e j5N̄~Ej !, ~1!

where

N̄~E!5EE

r̄~E8!dE8 ~2!

is the integrated average density of states@3#. By construc-
tion the new energiese j have unit mean level spacing. If th
system has a classical analog withn degrees of freedom
described by the HamiltonianH(pW ,qW ), pW 5(p1 ,...,pn), qW
5(q1 ,...,qn), then to leading order in a semiclassical expa
sion the average density of states is given by the Thom
Fermi approximation

r̄~E!'
1

~2p\!n E E dnp dnq d„E2H~pW ,qW !…. ~3!

This expression allows for an explicit implementation of t
unfolding procedure~1!–~2!.
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PRE 601063-651X/99/60~4!/3969~4!/$15.00
-

s
ol-

w
l
he
-
is

r
ni-
i-

-
s-

More recently, extensions of the universal behavior
disordered as well as chaotic quantum systems have b
developed to include parametric correlations and fluctuati
of the energy levels as some real parameterX controlling the
dynamics is varied~see Sec. III-H of@4# for a recent review!.
These extensions are of physical importance because m
response functions such as the magnetic susceptibility or
conductance may be expressed as parametric correlat
Exactly as for the usual fluctuations computed at fixed
rameter values, the mean properties of the flow of ene
levels e j (X) when X is varied are system dependent a
therefore nonuniversal. An appropriate scaling procedur
again necessary in order to extract the universal behavio

While the average velocity of the levels is set to zero
the energy unfolding~1! is implemented for arbitraryX,
what now characterizes the flowe j (X) is the typical slope of
the eigenvalues with respect toX. This typical slope is not
only system dependent, but it is moreover parameter dep
dent. In fact, the curvese j (X) as well as their average prop
erties vary when expressed as a function of a different
rameterY(X). Therefore, in order to have universality in th
theory it is necessary to show the existence of a parame
representation of the elementary quantum objects satisf
two basic conditions:~i! it scales out system-dependent fe
tures and~ii ! it is invariant under reparametrizations. Th
particular parametric representation should moreover
unique~it should be ‘‘the’’ parametrization!, since the exis-
tence of several different invariant parameters associa
with X would destroy the universality of the correlators.

The way to construct such a parameter is as follows. C
sider the variance of the distribution of the parametric velo
ties computed at fixedX in some window (e2De/2, e
1De/2), containingN levels, in which the statistics ar
evaluated,

^vX
2&5~1/N!(

j
~]e j /]X!2. ~4!

This function characterizes the nonuniversal mean prope
of the flow e j (X) in the window we are considering. Mor
precisely, it characterizes the response of the energy leve
an external perturbation and, following Thouless@5#, may be
interpreted as a generalized conductance of the system@6,7#.
3969 © 1999 The American Physical Society
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Then, to scale the spectral flow and eliminate the syst
dependent characteristics we introduce the parameter

m5E
X0

X
A^vX

2&dX, ~5!

where X0 is some reference value. The definition ofm is
universal, independent of the nature ofX. If the system is
reparametrized by introducing a new parameterY(X), then
A^vX

2&5A^vY
2&u]Y/]Xu. The last factoru]Y/]Xu is compen-

sated by the Jacobian of the transformation in Eq.~5! and we
have

m5E
X0

X
A^vX

2&dX5E
Y0

Y
A^vY

2&dY ~6!

for any transformationY(X). Notice that the prescription~5!
yields a parametrization that makes the velocity varia
identical to one,̂ vm

2 &[1, at all parameter valuesm.
We investigate now the uniqueness of this parametr

tion. It is actually possible to construct an infinite number
invariant parameters, according to

mm5NmE
X0

X

^vX
2m&1/2m dX,

with m51,2,... @all these parameters satisfy the analog
Eq. ~6!#. The normalization constantNm is defined in terms
of the 2mth moment of a Gaussian distribution with varian
one, Nm5@(2m21)!! #21/2m. In general these paramete
define different functions ofX. However, there is one par
ticular case for which they are all identical@and coincide
with the simplest onem51 of Eq. ~5!#, and this is when the
distribution of velocities is Gaussian. This distribution is e
pected to hold for generic fully chaotic systems. It can
easily seen to apply to the following parametric random m
trix model:

H5cosXH11sinXH2 , ~7!

whereH1 andH2 are two independent random matrices b
longing to one of the three universality classesb51, 2, or 4
~orthogonal, unitary, and symplectic, respectively! @8#. Fur-
thermore, a Gaussian distribution of velocities also holds
weakly disordered metallic systems, where it has been
plicitly demonstrated@7#.

We have therefore established the existence of a uni
parametric-invariant scalingprocedure for the restricte
class of systems having a Gaussian distribution of velocit
Conversely, this distribution of velocities becomes a nec
sary condition for universality. In nongeneric fully chaotic
disordered systems where the velocities are not Gaussian
tributed ~like, for example, in strongly disordered electron
systems or banded random matrix models@9#! the different
invariant parametrizations are not equivalent, and the uni
sality is lost.

All these considerations have their analog in the us
unfolding procedure at fixed parameter values. The mot
tion to unfold the spectrum according to the prescription~1!–
~2!—and not according to the more ‘‘primitive’’ one
r̄(Ej )Ej—is not only because it fixes the average mean sp
-
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ing to one ~both prescriptions do!, but more basically be-
cause it makes the new spectrume j invariant under reparam
etrizations of the energy.

As an illustration let us consider two well-known correl
tors, the velocity correlation function

cm~n!5 K ]e j

]m
~m0!

]e j

]m
~m01n!L

m0 , j

, ~8!

and the distributionp(km) of curvatures

km5
1

pb

]2e j

]m2 . ~9!

These quantities were investigated in the past for fully c
otic systems and in random matrix theory, as well as in d
ordered systems@10,6,11,7,12–16#. The parametric correla
tors were computed in terms of the rescaled parameter

x5A^vX
2&X, ~10!

which, in general, is not invariant under reparametrizatio
and may produce nonuniversal results. For example, cu
tures with respect to the parameterm and x @kx

5(]2e j /]X2)/(pb^vX
2&)# are related by

km5kx2
~]e j /]X!

2pb

~]^vX
2&/]X!

^vX
2&2 . ~11!

Thus, what is expected to be universal is not the distribut
of kx but the distribution of the particular combination give
on the right-hand side~rhs! of Eq. ~11!. The lack of reparam-
etrization invariance ofkx was properly emphasized an
nicely illustrated in Ref.@15#.

It follows from the definition~10! that the parameterx
coincides withm if the function ^vX

2& is stationary with re-
spect toX, i.e., it is independent ofX. Computations done on
a stationary spectrum having a Gaussian distribution of
locities using the parameterx are therefore correct in the
sense that the results obtained are expected to be unive
Because the Hamiltonian~7! satisfies this property, the dis
tribution

p~k!5Nb~11k2!2~b12!/2 ~12!

obtained from that model in Ref.@14# is the universal distri-
bution for the curvature~here Nb is a normalization con-
stant!. On the other hand, in the generic situation when pa
metric correlations are computed in a system where^vX

2&
varies withX ~nonstationary spectrum!, the use of the rescal
ing ~10! leads to nonuniversal results and the observed
tribution changes withX exactly as observed in Ref.@15#,
unless the correct parametric-invariant scaling~5! is used. To
illustrate this point we show in Fig. 1 the curvature distrib
tion of km and compare it with that ofkx for the Robnik-
limaçon billiard ~the ‘‘worst case’’ found in Ref.@15# is con-
sidered!. The use of the universal parameterm produces a
dramatic change on the distribution. We believe that
agreement with Eq.~12! will be further improved by going
higher in the spectrum.
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The functional values of statistics involving only first d
rivatives with respect to the parameter, like in Eq.~8!, are
invariant under reparametrizations using the parametex,
and one would then believe that both scalings are equiva
in this particular case. However, if^vX

2& varies withX the
function looks different when plotted againstx or m, because
x(X) is different from m(X). The use of the appropriat
parametric-invariant scaling~5! is therefore necessary eve
for correlators involving first derivatives only.

As for the density of states Eq.~3!, it would be desirable
to have an explicit expression allowing for a direct comp
tation of the nonuniversal function̂vX

2& ~the generalized
conductance!. Such an expression may be obtained fro
semiclassical estimates of off-diagonal matrix elements
applying results of RMT@8# or by comparing semiclassica
computations of the parametric density correlation funct
with results obtained in disordered metallic systems@7,17#. It
is, however, possible to derive it from a direct semiclass
calculation based on the Gutzwiller trace formula. The st
ing point is the counting function for the unfolded spectru
N(e,X)5( jQ„e2e j (X)… ~Q is the Heaviside function!. We
define the velocity density as

rv
h~e!52

dNh

dX
5

1

p (
j

h

~e2e j !
21h2 S ]e j

]X D , ~13!

where for convenience we have replaced the delta func
by anh-smoothed Lorentzian. From this we obtain

(
j

d~e2e j !~]e j /]X!25 lim
h→0

2ph@rv
h~e!#2, ~14!

which is our starting point for the semiclassical calculatio
since the average of the lhs defines the average vari
^vX

2&. To leading order in\, Nh(e,X) for a chaotic system is
given by @18#

Nh~e,X!5e1
\

i (
p

Ap

Tp
eiSp /\2htp /\.

The sum is over all the periodic orbits of the classical s
tem, Ap is an amplitude that depends on their stability, a
Sp andTp are their action and period, respectively. Furth

FIG. 1. Curvature distributions from the eigenvaluesn52001 to
n53000 of the odd symmetry class of the Robnik-limac¸on billiard
at X5l50.49; dotted histogram,kx ~noninvariant!; continuous his-
togram,km ~invariant!. Dashed curve, RMT prediction, Eq.~12!.
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more,tp5u]Sp /]eu5uTp / r̄u and the sum runs over positiv
and negative values ofp. Deriving this expression with re
spect toX according to Eq.~13!, replacing in Eq.~14!, av-
eraging in a small energy window, and keeping only t
diagonal part of the sum one obtains a semiclassical estim
for ^vX

2&. An analogous calculation was made in Ref.@19# to
compute the variance of diagonal matrix elements of an
bitrary operatorA. In our caseA5]H/]X, and we obtain

^@rv
h~e!#2&5

2

h2 E
0

` KD

T2 ^Qp
2&e22hT/~ r̄\!dT, ~15!

with KD(T)5h2^(puApu2d(T2Tp)&, and ^Qp
2&

5(pQp
2uApu2/(puApu2 with Qp5]Sp /]Xue . The sum runs

over orbits having a periodTp betweenT andT1dT. It can
be shown that the vanishing of the off-diagonal terms f
lows from RMT, if we assume that the semiclassical theo
can reproduce the RMT results for parametric correlatio
Furthermore, the variance of the distribution ofQp is simply
proportional to the period of the orbit@20#, ^Qp

2&5aT.
The functionKD(T) has also a linear dependence on t

period @21#, KD(T)52T/b. From this and from Eqs.~15!
and ~14! we get the final expression for the variance of t
velocity @19#,

^vX
2&5

ar̄

bp\
. ~16!

It is, moreover, easy to see from the previous express
that with our assumptions there is no contribution to Eq.~16!
coming from the nonuniversal short periodic orbits.

The classical parametera in Eq. ~16! is generally, liker̄,
a function ofX and of the energy. It depends on the syste
and the particular parametric variation under study. For
ample, for a two-dimensional billiard of areaA and perim-
eterL, consider a general deformation that moves the bou
ary ~parametrized bys, 0<s,L) by an amountg(s)dX in
the normal direction. The quantitiesQp for periodic orbits
with periodT are given in this case by

Qp52
TL\2k2

2mA ^g&12\k(
i 51

np

cosu i g~si !, ~17!

where ^ f &5(1/L)*0
Lf (s)ds, k is the wave number corre

sponding toe, np is the number of bounces of the orbit, an
si andu i denote the points of reflection and the angle of t
trajectory with the tangent to the boundary at these poi
respectively. After calculatinĝQp

2& from this expression we
obtain the following result fora:

a5
4L~2mE!3/2

pmA ~C1^g
2&2C 2^g&2!. ~18!

The constantsC1 and C2 contain dynamical information
about the periodic orbits,

C15
2

3 F112(
t51

`

f ~t!G , ~19!
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C25
p2

16F112(
t51

`

f ~t!2
snp

2

np
G , ~20!

with

f ~t!5
^g~si !cosu ig~si 1t!cosu i 1t&2~p2/16!^g&2

~2/3!^g2&2~p2/16!^g&2 .

~21!

The numerical factors in these expressions come from
ergodic phase-space averages^cosu&25p2/16 and ^cos2 u&
52/3. By definition,f (0)51 and f (t)→0 for larget. The
quantitiessnp

2 andnp are the variance and the average of t

number of bounces of periodic orbits with periodT→`,
respectively. In the extreme case where the correlations
tween the consecutive segments of an orbit are neglected~the
uncorrelated, ‘‘random’’ case!, thenC152/3 andC250.

Notice from Eqs.~16! and ~18! the energy dependenc
E3/2 of the average variance of the velocity@16# ~to leading
order r̄5A/4p for two-dimensional billiards in dimension
less units\52m51). This dependence holds for arbitra
deformations of chaotic two-dimensional billiards, but oth
dynamical properties of a system or other parametric va
tions may produce different energy dependences~for ex-
ample, for integrable billiard systems we obtain^vX

2&}E2,
while for chaotic billiards with Aharonov-Bohm fluxe
^vX

2&}AE @16#!. Figure 2 shows the~normalized! variance of
the velocity for a chaotic billiard in comparison with th
semiclassical approximation~18! with C152/3 andC250. A
linear increase is observed, in agreement with the predi
energy dependence. Moreover, the slope agrees with
simple semiclassical estimate. The variation with energy a
implies that in general it is not possible to simultaneously
to one the mean spacing and^vX

2& for arbitrary energies. All
parametric correlators should therefore be computed in
energy window.

In conclusion, we have introduced a universal invaria
way of scaling the parameter-dependent correlators in qu
-
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tum mechanics. We have, moreover, obtained express
that allow for an explicit implementation of this scaling pr
cedure and predicted a universal energy dependence o
variance of the velocities for deformations of a chaotic b
liard. Contrary to the density of states, which depends o
on global geometrical properties of phase space, the der
tion of Eq. ~16! assumes a~fully ! chaotic dynamics. More-
over the parametric-invariant scaling procedure is uniq
only in the situation of generic chaotic and weakly diso
dered systems with a Gaussian distribution of the velocit
Our results, in particular, the predictions concerning tw
dimensional billiards, may be tested experimentally in qu
tum dots, metallic grains, or microwave cavities.
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FIG. 2. The quantityf (n)5( j 5n0

n (]e j /]r )2/e j
3/2, in dimension-

less units, for the eigenvalues of the two symmetry classes
quarter Sinai billiard at radiusr 50.5 andn051500 ~full lines! in
comparison with the semiclassical approximation~dotted line!.
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