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Universality in quantum parametric correlations
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We investigate the universality of correlation functions of chaotic and disordered quantum systems as an
external parameter is varied. A general scaling procedure is introduced which makes the theory invariant under
reparametrizations. Under certain general conditions we show that this procedure is unique. The approach is
illustrated with the particular case of the distribution of eigenvalue curvatures. We also derive a semiclassical
formula for the nonuniversal scaling factor, and give an explicit expression valid for arbitrary deformations of
a billiard system[S1063-651X99)10910-3

PACS numbgs): 05.45.Mt, 05.40-a, 03.65.Sq

Several criticisms were formulated many years ago con- More recently, extensions of the universal behavior of
cerning the applicability of random matrix theof®MT) in disordered as well as chaotic quantum systems have been
the description of the behavior of complex quantum systemseveloped to include parametric correlations and fluctuations
such as the atomic nucleus. The basic question was as fabf the energy levels as some real paramiteontrolling the
lows: should one trust the predictions of RMT at all if al- dynamics is variedsee Sec. IlI-H of4] for a recent review
ready the average density of stat@éigner’s semicircle law ~ These extensions are of physical importance because many
does not give a good description of real systems? We nowesponse functions such as the magnetic susceptibility or the
know that RMT describes the universal behavior of localconductance may be expressed as parametric correlations.
fluctuation properties. These have been shown to be, in thExactly as for the usual fluctuations computed at fixed pa-
limit of large dimensions, invariant for a large class of en-rameter values, the mean properties of the flow of energy
sembles of matrices, while the average spectral density ievels €;(X) when X is varied are system dependent and
ensemble dependent and therefore nonunivgisdl. For a  therefore nonuniversal. An appropriate scaling procedure is
given physical system, it is now well established that in ordergain necessary in order to extract the universal behavior.
to eliminate the system-dependent features and observe uni- While the average velocity of the levels is set to zero if
versal fluctuations one should consider, instead of the origithe energy unfolding(1) is implemented for arbitrary,
nal eigenenergieg;, j=1,2,.., theunfolded spectrum what now characterizes the flogy(X) is the typical slope of

o the eigenvalues with respect ¥a This typical slope is not
€;=N(Ej), (1) only system dependent, but it is moreover parameter depen-
dent. In fact, the curves;(X) as well as their average prop-
where erties vary when expressed as a function of a different pa-
rameterY(X). Therefore, in order to have universality in the
N(E)= fEH(E’)dE’ @) theory it is necessary to show the existence Qf a para_mefcric
representation of the elementary quantum objects satisfying
two basic conditions(i) it scales out system-dependent fea-
is the integrated average density of stdt@k By construc-  tures and(ii) it is invariant under reparametrizations. This
tion the new energies; have unit mean level spacing. If the particular parametric representation should moreover be
system has a classical analog withdegrees of freedom unique(it should be “the” parametrization since the exis-
described by the Hamiltonia® (p,4), p=(p;.....Pn), G  tence of several different invariant parameters associated
=(Q1,..-,.0n), then to leading order in a semiclassical expan-with X would destroy the universality of the correlators.
sion the average density of states is given by the Thomas- The way to construct such a parameter is as follows. Con-
Fermi approximation sider the variance of the distribution of the parametric veloci-
ties computed at fixedX in some window €—Ae/2, €
+Ae€/2), containingN levels, in which the statistics are
evaluated,

—~ 1 n n =1
p(E)~(2W—ﬁ)nffd pd'g S(E-H(p.G). (3

This expression allows for an explicit implementation of the 2 ‘ 2
unfolding proceduré1)—(2). <V><>—(1/N); (dejl9X)". 4

This function characterizes the nonuniversal mean properties
*Present address: Max-Planck-Institut Rhysik komplexer Sys-  of the flow ¢;(X) in the window we are considering. More

teme, Nahnitzer Str. 38, 01187 Dresden, Germany. precisely, it characterizes the response of the energy levels to
Tunite de recherche de I'Universitele Paris XI assocee au  an external perturbation and, following Thoul¢S$ may be
CNRS. interpreted as a generalized conductance of the syl&efh
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Then, to scale the spectral flow and eliminate the systeming to one (both prescriptions do but more basically be-

dependent characteristics we introduce the parameter cause it makes the new spectrejrinvariant under reparam-
etrizations of the energy.
X . . .
_ v As an illustration let us consider two well-known correla-
K= LO {vigdX, ®) tors, the velocity correlation function

where X, is some reference value. The definition @fis | 9€j JE€; N 8
universal, independent of the nature %f If the system is Cul(v)= ﬁ("’“(’)ﬁ("‘o v ®)
reparametrized by introducing a new paramétéx), then Kol

V(v2y=(v2)|aYIdX|. The last factofdY/aX| is compen-
sated by the Jacobian of the transformation in Ggand we
have 1 326j

K,=——>.
X Y “oaB du
p= JX V(v dX= fY V(v dy (6)

and the distributiop(k,,) of curvatures

C)

These quantities were investigated in the past for fully cha-
otic systems and in random matrix theory, as well as in dis-
ordered systemgl0,6,11,7,12—1p The parametric correla-
ors were computed in terms of the rescaled parameter

for any transformatiory (X). Notice that the prescriptiofb)
yields a parametrization that makes the velocity varianc
identical to one(vi)zl, at all parameter values.

We investigate now the uniqueness of this parametriza- _ 2
. . X L X= (V) X, 10
tion. It is actually possible to construct an infinite number of (v (10

invariant parameters, according to which, in general, is not invariant under reparametrizations

X and may produce nonuniversal results. For example, curva
=N f (V)2<m>l/2m dx, tures with respect to the parametex and x [k,
Xo = (%€;19X?)1(mB(v%))] are related by

with m=1,2,... [all these parameters satisfy the analog of (9€ 10X) (H{v2)X)
Eg. (6)]. The normalization constarit,, is defined in terms K, =Ky~ ' >
of the 2mth moment of a Gaussian distribution with variance 2mp (Vi)
one, N,=[(2m—1)!1]1"¥2" In general these parameters
define different functions oK. However, there is one par-
ticular case for which they are all identicehnd coincide

1D

Thus, what is expected to be universal is not the distribution
of k, but the distribution of the particular combination given
on the right-hand sidéhs) of Eq. (11). The lack of reparam-

with the simplest onen=1 of Eq.(5)], and this is when the e NI . ® : hasized and
distribution of velocities is Gaussian. This distribution is ex- efmzatl_on Invariance ok, was properly emphasized an
nicely illustrated in Ref[15].

pected to hold for generic fully chaotic systems. It can be ol ¢ he definiti hat th
easily seen to apply to the following parametric random ma- |t follows from the de |n|'t|on(120) that the parametex
trix model: coincides withu if the function(v) is stationary with re-

spect toX, i.e., itis independent of. Computations done on
H=cosXH;+sinXH,, 7) a stationary spectrum having a Gaussian distribution of ve-
locities using the parameter are therefore correct in the
whereH; andH, are two independent random matrices be-sense that the results obtained are expected to be universal.
longing to one of the three universality clasg@s 1, 2, or 4  Because the Hamiltoniafy) satisfies this property, the dis-
(orthogonal, unitary, and symplectic, respectiyel§]. Fur-  tribution
thermore, a Gaussian distribution of velocities also holds for
weakly disordered metallic systems, where it has been ex- p(K)=Np(1+Kk?)~(Fr2)2 (12
plicitly demonstrated7].

We have therefore established the existence of a uniqu@ptained from that model in Reff14] is the universal distri-
parametric-invariant scalingprocedure for the restricted bution for the curvaturghere Nz is a normalization con-
class of systems having a Gaussian distribution of velocitiesstan). On the other hand, in the generic situation when para-
Conversely, this distribution of velocities becomes a necesmetric correlations are computed in a system wherg)
sary condition for universality. In nongeneric fully chaotic or varies withX (nonstationary spectrumthe use of the rescal-
disordered systems where the velocities are not Gaussian digg (10) leads to nonuniversal results and the observed dis-
tributed (like, for example, in strongly disordered electronic tribution changes withX exactly as observed in Ref15],
systems or banded random matrix modé&$ the different  unless the correct parametric-invariant scaliigis used. To
invariant parametrizations are not equivalent, and the univerilustrate this point we show in Fig. 1 the curvature distribu-
sality is lost. tion of k, and compare it with that ok, for the Robnik-

All these considerations have their analog in the usualimagon billiard (the “worst case” found in Ref{15] is con-
unfolding procedure at fixed parameter values. The motivasidered. The use of the universal parameferproduces a
tion to unfold the spectrum according to the prescrip{br-  dramatic change on the distribution. We believe that the
(2—and not according to the more “primitive” one agreement with Eq(12) will be further improved by going
p(E;j)Ej—is not only because it fixes the average mean spadiigher in the spectrum.
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0.5 ' . S ] more,t,=[3S,/de|=|T,/p] and the sum runs over positive

0.45 - [ 7 and negative values gd. Deriving this expression with re-

041 104 spect toX according to Eq(13), replacing in Eq.(14), av-

0351 eraging in a small energy window, and keeping only the
. 03r diagonal part of the sum one obtains a semiclassical estimate
=y for (v4). An analogous calculation was made in Hé®] to

02 compute the variance of diagonal matrix elements of an ar-

0151 bitrary operatorA. In our caseA=gH/dX, and we obtain

0.1

el a_ 2 (Ko o o

00k (U= | FR(QRe T, a9

: 2
FIG. 1. Curvature distributions from the eigenvalmes2001 to ~ With Ko(T)=h*(Z,|Ap|28(T=Tp)), and  (Qp)

n=3000 of the odd symmetry class of the Robnik-limadilliard = =pQp|Ap|%/= | Apl? with Q,=dS,/dX|.. The sum runs
atX=\=0.49; dotted histogrank, (noninvariant; continuous his-  over orbits having a period, betweenT andT+dT. It can
togram,k,, (invarian. Dashed curve, RMT prediction, E¢L2). be shown that the vanishing of the off-diagonal terms fol-

lows from RMT, if we assume that the semiclassical theory

The functional values of statistics involving only first de- can reproduce the RMT results for parametric correlations.
rivatives with respect to the parameter, like in E8), are  Furthermore, the variance of the distribution@jf is simply
invariant under reparametrizations using the paramefer proportional to the period of the orl{i20], <Q§>=aT.
and one would then believe that both scalings are equivalent The functionKp(T) has also a linear dependence on the
in this particular case. However, {ﬁ/i) varies withX the  period[21], Kp(T)=2T/B. From this and from Eqs(15)
function looks different when plotted againsbr u, because and (14) we get the final expression for the variance of the
x(X) is different from u(X). The use of the appropriate velocity [19],
parametric-invariant scalin¢b) is therefore necessary even
for correlators involving first derivatives only. 5 ap

As for the density of states E¢B), it would be desirable (Vio=5—- (16)
to have an explicit expression allowing for a direct compu-

tation of the nonuniversal functiovy) (the generalized is, moreover, easy to see from the previous expressions

conductance Such an expression may be obtained fromy, ¢ with our assumptions there is no contribution to @6)
semiclassical estimates of off-diagonal matrix elements bY:oming from the nonuniversal short periodic orbits.

applying results of RMT[8] or by comparing semiclassical The classical parameterin Eq. (16) is generally, likep,
computations of the parametric density correlation functiona function ofX and of the energy. It depends on the system
with results obtained in disordered metallic syst¢ma7]. It nd the particular parametric variation under study. For ex-
is, however, possible to derive it from a direct semiclassica mple, for a two-dimensional billiard of are4 and perim-

palculgtlo_rl based on 'the Gutzywller trace formula. The Start'eter£, consider a general deformation that moves the bound-
ing point is the counting function for the unfolded spectrum

. . . . ary (parametrized by, 0<s</,) by an amoung(s)dX in

SI(S’X)IEEjI(E;EjéX))I(t® is the Heaviside functionWe e normal direction. The quantitie®, for periodic orbits
efine the velocily density as with period T are given in this case by

dN7 1 7

JE€;
Moy — [ S Mt | , 13 21,2 n
py(e) dX w; (e—ej)2+ 7° aX> (13 Qp:_Tﬁﬁ K (g)+2hk_2pl cos#, g(s;), (17)

2mA
where for convenience we have replaced the delta function
by an »-smoothed Lorentzian. From this we obtain Where<f>:(1/£)f§f(s)ds, k is the wave number corre-
sponding toe, n, is the number of bounces of the orbit, and
> s(e— €)(9€10X)2=lim2mp[pl(e)]2, (14 S and 6; denote the points of reflection and the angle of the
i 7—0 trajectory with the tangent to the boundary at these points,
respectively. After caIcuIatinQQf,) from this expression we
which is our starting point for the semiclassical calculationsoptain the following result for:
since the average of the lhs defines the average variance

(v2). To leading order irii, N”(¢e,X) for a chaotic system is 4L£(2mE)%? ) )
given by[18] a= TA(Cl<g )—C2(9)%). (18
e Ap o o : N .
N7(e,X)=e+ — D, ——eiSp/h=mtplh The constantsC; and C, contain dynamical information
1% Tp about the periodic orbits,

The sum is over all the periodic orbits of the classical sys- 2
tem, A, is an amplitude that depends on their stability, and Ci==

, 19
S, and T, are their action and period, respectively. Further- 3 (19

1+221 f(7)
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500 |- * 4

The numerical factors in these expressions come from the 0 L b

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

ergodic phase-space average®st)’=n*/16 and(cos 6) "

=2/3. By definition,f(0)=1 andf(7)—0 for larger. The
uantitiess> andn,, are the variance and the average of the ~ FIG. 2. The quantity(n)=3"_, (de /dr)%/e¥?, in dimension-
q n, p g j=nol7€] i

number of bounces of periodic orbits with peridd-oe, less units, for the eigenvalues of the two symmetry classes of a
respectively. In the extreme case where the correlations béluarter Sinai billiard at radius=0.5 andn,=1500 (full lines) in
tween the consecutive segments of an orbit are neglétted comparison with the semiclassical approximatidotted ling.
uncorrelated, “random” cagethenC;=2/3 andC,=0.

Notice from Egs.(16) and (18) the energy dependence tum mechanics. We have, moreover, obtained expressions
E3? of the average variance of the velocf6] (to leading  that allow for an explicit implementation of this scaling pro-
Orderp=.A/477 for two-dimensional billiards in dimension- cedure and predicted a universal energy dependence of the
less unitsh =2m=1). This dependence holds for arbitrary yariance of the velocities for deformations of a chaotic bil-
deform.ations of chaotic two-dimensional billiards, bL_lt Oth?fliard_ Contrary to the density of states, which depends only
dynamical properties of a system or other parametric variag giobal geometrical properties of phase space, the deriva-
tions may produce different energy dependendes €X- tion of Eq. (16) assumes 4fully) chaotic dynamics. More-
ample, for integrable billiard systems we obtdWi)<E%,  ver the parametric-invariant scaling procedure is unique
th'le for chaotic billiards with Aharonov-Bohm fluxes o iy the situation of generic chaotic and weakly disor-
(v VE [16)). Figure 2 shows thenormalized variance of  jeraq systems with a Gaussian distribution of the velocities.
the velocity for a chaotic billiard in comparison with the o, results, in particular, the predictions concerning two-

ls_emlclgssmal approgumatlc((jm}) with C,=2/3 a.nr?cﬁ: 0. A;j imensional billiards, may be tested experimentally in quan-
inear increase is observed, in agreement with the predicteg), ,, dots, metallic grains, or microwave cavities.

energy dependence. Moreover, the slope agrees with the
simple semiclassical estimate. The variation with energy also We would like to thank A. Beker, O. Bohigas, and M.
implies that in general it is not possible to simultaneously seRobnik for useful and stimulating discussions. Moreover, we
to one the mean spacing afw) for arbitrary energies. All  thank A. Baker for the spectral data of the Robnik-lipeec
parametric correlators should therefore be computed in ahilliard, and H. Schanz for the spectral data of the Sinai
energy window. billiard. M.S. acknowledges financial support by the Alex-

In conclusion, we have introduced a universal invariantander von Humboldt-Stiftung and the Deutsche Forschungs-
way of scaling the parameter-dependent correlators in quargemeinschatft.
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